Introducción a la Mecánica Cuántica

0,00

Con este curso gratuito de 69 lecciones en vídeo aprenderás sobre los conceptos más importantes de la Integración Numérica

En análisis numérico, la integración numérica constituye una amplia gama de algoritmos para calcular el valor numérico de una integral definida y, por extensión, el término se usa a veces para describir algoritmos numéricos para resolver ecuaciones diferenciales. El término cuadratura numérica (a menudo abreviado a cuadratura) es más o menos sinónimo de integración numérica, especialmente si se aplica a integrales de una dimensión a pesar de que para el caso de dos o más dimensiones (integral múltiple) también se utiliza.

Vendido por : Docencia Online - Cursos Gratis, Webinars y Clases Online Categoría:

Descripción

Con este curso gratuito de 254 lecciones en vídeo aprenderás sobre los conceptos más importantes de la Mecánica Cuántica

La mecánica cuántica es la rama de la física que estudia la naturaleza a escalas espaciales pequeñas, los sistemas atómicos y subatómicos y sus interacciones con la radiación electromagnética, en términos de cantidades observables. Se basa en la observación de que todas las formas de energía se liberan en unidades discretas o paquetes llamados cuantos. Sorprendentemente, la teoría cuántica solo permite normalmente cálculos probabilísticos o estadísticos de las características observadas de las partículas elementales, entendidos en términos de funciones de onda.

La ecuación de Schrödinger desempeña el papel en la mecánica cuántica que las leyes de Newton y la conservación de la energía hacen en la mecánica clásica. Es decir, la predicción del comportamiento futuro de un sistema dinámico y es una ecuación de onda en términos de una función de onda la que predice analíticamente la probabilidad precisa de los eventos o resultados. En teorías anteriores de la física clásica, la energía era tratada únicamente como un fenómeno continuo, en tanto que la materia se supone que ocupa una región muy concreta del espacio y que se mueve de manera continua. Según la teoría cuántica, la energía se emite y se absorbe en cantidades discretas y minúsculas. Un paquete individual de energía, llamado cuanto, en algunas situaciones se comporta como una partícula de materia. Por otro lado, se encontró que las partículas exponen algunas propiedades ondulatorias cuando están en movimiento y ya no son vistas como localizadas en una región determinada, sino más bien extendidas en cierta medida. La luz u otra radiación emitida o absorbida por un átomo solo tiene ciertas frecuencias (o longitudes de onda), como puede verse en la línea del espectro asociado al elemento químico representado por tal átomo. La teoría cuántica demuestra que tales frecuencias corresponden a niveles definidos de los cuantos de luz, o fotones, y es el resultado del hecho de que los electrones del átomo solo pueden tener ciertos valores de energía permitidos. Cuando un electrón pasa de un nivel permitido a otro, una cantidad de energía es emitida o absorbida, cuya frecuencia es directamente proporcional a la diferencia de energía entre los dos niveles.

La mecánica cuántica surge tímidamente en los inicios del siglo xx dentro de las tradiciones más profundas de la física para dar una solución a problemas para los que las teorías conocidas hasta el momento habían agotado su capacidad de explicar, como la llamada catástrofe ultravioleta en la radiación de cuerpo negro predicha por la física estadística clásica y la inestabilidad de los átomos en el modelo atómico de Rutherford. La primera propuesta de un principio propiamente cuántico se debe a Max Planck en 1900, para resolver el problema de la radiación de cuerpo negro, que fue duramente cuestionado, hasta que Albert Einstein lo convierte en el principio que exitosamente pueda explicar el efecto fotoeléctrico. Las primeras formulaciones matemáticas completas de la mecánica cuántica no se alcanzan hasta mediados de la década de 1920, sin que hasta el día de hoy se tenga una interpretación coherente de la teoría, en particular del problema de la medición.

El formalismo de la mecánica cuántica se desarrolló durante la década de 1920. En 1924, Louis de Broglie propuso que, al igual que las ondas de luz presentan propiedades de partículas, como ocurre en el efecto fotoeléctrico, las partículas, a su vez, también presentan propiedades ondulatorias. Dos formulaciones diferentes de la mecánica cuántica se presentaron después de la sugerencia de Broglie. En 1926, la mecánica ondulatoria de Erwin Schrödinger implica la utilización de una entidad matemática, la función de onda, que está relacionada con la probabilidad de encontrar una partícula en un punto dado en el espacio. En 1925, la mecánica matricial de Werner Heisenberg no hace mención alguna de las funciones de onda o conceptos similares, pero ha demostrado ser matemáticamente equivalente a la teoría de Schrödinger. Un descubrimiento importante de la teoría cuántica es el principio de incertidumbre, enunciado por Heisenberg en 1927, que pone un límite teórico absoluto en la precisión de ciertas mediciones. Como resultado de ello, la asunción clásica de los científicos de que el estado físico de un sistema podría medirse exactamente y utilizarse para predecir los estados futuros tuvo que ser abandonada. Esto supuso una revolución filosófica y dio pie a numerosas discusiones entre los más grandes físicos de la época.

La mecánica cuántica propiamente dicha no incorpora a la relatividad en su formulación matemática. La parte de la mecánica cuántica que incorpora elementos relativistas de manera formal para abordar diversos problemas se conoce como mecánica cuántica relativista o ya, en forma más correcta y acabada, teoría cuántica de campos (que incluye a su vez a la electrodinámica cuántica, cromodinámica cuántica y teoría electrodébil dentro del modelo estándar)1​ y más generalmente, la teoría cuántica de campos en espacio-tiempo curvo. La única interacción elemental que no se ha podido cuantizar hasta el momento ha sido la interacción gravitatoria. Este problema constituye entonces uno de los mayores desafíos de la física del siglo xxi. La mecánica cuántica se combinó con la teoría de la relatividad en la formulación de Paul Dirac de 1928, lo que, además, predijo la existencia de antipartículas. Otros desarrollos de la teoría incluyen la estadística cuántica, presentada en una forma por Einstein y Bose (la estadística de Bose-Einstein) y en otra forma por Dirac y Enrico Fermi (la estadística de Fermi-Dirac); la electrodinámica cuántica, interesada en la interacción entre partículas cargadas y los campos electromagnéticos, su generalización, la teoría cuántica de campos y la electrónica cuántica.

La mecánica cuántica proporciona el fundamento de la fenomenología del átomo, de su núcleo y de las partículas elementales (lo cual requiere necesariamente el enfoque relativista). También su impacto en teoría de la información, criptografía y química ha sido decisivo entre esta misma.

Valoraciones

No hay valoraciones aún.

Sé el primero en valorar “Introducción a la Mecánica Cuántica”

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Cursos de Física Gratis

Encuentra los Cursos de Física disponibles Online en nuestra plataforma de Docencia Online Los algunos de muchos conceptos físicos fundamentales son aquellos que aparecen en toda teoría física de la materia, y por tanto son conceptos que aparecen en teorías físicas muy diferentes que van desde la mecánica clásica a la teoría cuántica de campos pasando por la teoría de la relatividad y la mecánica cuántica no-relativista. Otros estudios consideran que existen ramas de la física que se deben desarrollar a profundidad como problemas físicos específicamente relacionados con la materia viviente. Dentro de los problemas tienen alcance de operación, de procedimiento, en dependencia de que se considere la actividad de solución el método con que se enfrente el problema. La física molecular es la rama de la física que estudia los problemas relacionados con la estructura atómica de la materia y su interacción con el medio, es decir con la materia la luz.